Abstract

Microtubule-targeting agents (MTA) have enjoyed significant clinical success for decades. However, several mechanisms may cause inactivation of such drugs, leading to acquired resistance in patients treated with them. Therefore, drugs containing a stilbene-like skeleton and possessing dual inhibitory activity may provide a new and differentiated treatment for patients to overcome challenging acquired resistance. A new compound (16c) displays promising anticancer activity with GI50 of 22 ± 2 and 12 ± 0.1 nM in vincristine-resistant nasopharyngeal (KB-Vin) cancer cells and etoposide-resistant nasopharyngeal (KB-7D) cancer cells and is better than vincristine, etoposide, ABT-751, and MS-275. A mechanistic study revealed that 16c interferes with the cell cycle distribution and induces cell cycle arrest at the G2/M phase and severe mitotic spindle defects followed by apoptosis. In addition, it produces much more significant cytotoxicity than vincristine and etoposide in the corresponding resistant cells, indicating that it may be a promising candidate to overcome drug resistance in cancer cells. Compound 16c also displays inhibitory activity against HDAC 1 and HDAC 2 with IC50 values of 1.07 μM, and 1.47 μM, respectively. These findings may lead to a new type of structural motif for future development of drugs that could overcome acquired resistance to MTAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.