Abstract

Chalcone, a natural structure, demonstrates many pharmacological activities including anticancer, and one promising mechanism is to modulate the generation of ROS. It has been known that pyroptosis is associated with anticancer effects, whereas there is fewer researches about ROS-mediated pyroptosis triggered by chemotherapy drugs. Moreover, incorporation of a α,β-unsaturated ketone unit into chalcone may be an effective strategy for development of chemotherapy drugs. Hence, a number of chalcone analogues bearing a α,β-unsaturated ketone were synthesized from chalcone analogues 1 with modest anticancer activities as the lead compound. Structure-activity relationship (SAR) studies confirmed the function of α,β-unsaturated ketone to improve anticancer activity. Notably, compound 8, bearing a α,β-unsaturated ketone, is the most potent inhibitor of cancer, with IC50 values on NCI-H460, A549 and H1975 cells of 2.3 ± 0.3, 3.2 ± 0.0 and 5.7 ± 1.4 μM, respectively. Besides, 8 showed antiproliferative ability against NCI-H460 cells in a time- and concentration-dependent manner through modulating ROS to induce caspase-3-mediated pyroptosis, and displayed a better safety profile in vivo. Overall, these results demonstrated that compound 8 is a candidate agent and a potential lead compound for development of chemotherapy drugs, and can be used as a probe to further examine the mechanism of ROS-dependent pyroptosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.