Abstract

Supercritical fluid chromatography (SFC) today represents an alternative technique in analytical chemistry due to its obvious benefits in kinetic performance and its complementarity to liquid chromatography. In this paper, a series of alkylsiloxane-bonded stationary phases were synthesized and evaluated to expand their SFC applications. Five kinds of non-endcapped C8 stationary phases (C8-1 to C8-5) with increasing bonding density were synthesized, and the carbon content was 3.91%, 6.07%, 7.97%, 8.65% and 9.10% respectively. Retention mechanism of the C8 phases in SFC in SFC was investigated by the use of a linear solvation energy relationship (LSER) model. Results underlined a close relationship between the bonding density of alkyl chain and the dispersion and polar interactions of the stationary phase. Complementary evaluation was studied based on the calculation of vector angle (θ), and the widest θ of 123° was found between silica and C8 with the highest bonding density. Selective diversity also existed between the two C8 phases with the highest and lowest bonding densities. In addition, the effect of modifier on the SFC mechanism was investigated. Modifiers (methanol, ethanol, isopropanol and acetonitrile) had insignificant influence on the dispersion interaction but they mainly affected the hydrogen bonding interaction by changing the LSER parameters a and b. Finally, C8 and silica columns were applied for separation of eight amide alkaloids of Piper kadsura. Silica provided better retention but limited selectivity while C8 can distinguish alkaloids different in alkyl chain, double bond and cis-trans structure. This research further contributed to demonstrate the potential of alkylsiloxane-bonded stationary phase in improving selectivity of SFC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call