Abstract

Small-molecule inhibitors targeting programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) interactions can compensate for the shortcomings of antibody-based inhibitors and have attracted considerable attention, some of which have already entered clinical trials. Herein, based on our previous study on small-molecule PD-L1 inhibitors, we reported a series of 8-(o-tolyl)quinazoline derivatives by the skeleton merging strategy. Homogenous time-resolved fluorescence (HTRF) assay against PD-1/PD-L1 interaction identified compound A5, which showed the most potent inhibition with an IC50 value of 23.78 nM. Meanwhile, based on the results of HTRF assay, the structure-activity relationships (SARs) of the tail were focused on. Cell-based PD-1/PD-L1 blockade assay further revealed that A5 significantly blocked the PD-1/PD-L1 interaction at 1.1 μM in the co-culture system of Jurkat-NFAT-PD-1 cells and Hep3B-OS8-hPD-L1 cells with no significant cytotoxicity on Jurkat cells. Moreover, the proposed binding mode of A5 was investigated by a docking analysis. These results indicate that compound A5 is a promising lead compound that deserves further investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call