Abstract

Poly(ADP-ribose)polymerase-1 is an important target enzyme in drug design; inhibitors have a wide variety of therapeutic activities. A series of quinoline-8-carboxamides was designed to maintain the required pharmacophore conformation through an intramolecular hydrogen bond. 3-Substituted quinoline-8-carboxamides were synthesized by Pd-catalyzed couplings (Suzuki, Sonogashira, Stille) to 3-iodoquinoline-8-carboxamide, an efficient process that introduces diversity in the final step. 2-Substituted quinoline-8-carboxamides were prepared by selective Pd-catalyzed couplings at the 2-position of 2,8-dibromoquinoline, followed by lithium-bromine exchange of the intermediate 2-(alkyl/aryl)-8-bromoquinolines and reaction with trimethylsilyl isocyanate. The intramolecular hydrogen bond was confirmed by X-ray and by NMR. The SAR of the 3-substituted compounds for inhibition of human recombinant PARP-1 activity showed a requirement for a small narrow group. Substituents in the 2-position increased potency, with the most active 2-methylquinoline-8-carboxamide having IC(50) = 500 nM (IC(50) = 1.8 microM for 5-aminoisoquinolin-1-one (5-AIQ, a standard water-soluble inhibitor)).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.