Abstract

An efficient method for preparing highly dispersed bimetallic catalysts is described based on the different Point Zero Charges of Fe2O3 and SiO2. The strong electrostatic adsorption (SEA) technique was applied to the preparation of Pt-promoted Fe/SiO2 by driving the Pt precursor onto the Fe2O3 phase instead of the silica support. Characterization of the samples was carried out using N2 adsorption- desorption, X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDS). The results showed that the SEA method can control the uptake of Pt onto the transition metal oxide instead of silica, forming tight coupling between the Pt and transition metal after reduction. Compared with the incipient wetness (IW) method, the SEA technique produced more intimately designed bimetallic particles with small, uniform distribution after reduction. The particle size is about 2 nm. From Fischer-Tropsch (F-T) reaction, the catalyst using SEA shows higher F-T activity and stability. The conversion is more than 51% after 150 h on the stream.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.