Abstract

A significant technical barrier (i.e., facile oxidative degradation) that has prevented the preparation of large acenes has now been breached. Using a combination of experimentally and theoretically derived substituent effects, the design, synthesis, isolation, and characterization of the first persistent nonacene derivative is described. The molecular design strategy includes placement of arylthio (or alkylthio) substituents on the terminal rings of the nonacene skeleton, effectively converting an open-shell singlet diradical into a closed-shell system. These powerful substituent effects appear to be suitable for the synthesis of other persistent, soluble, large acene derivatives required for advanced thin-film organic semiconductor applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.