Abstract

A novel pharmacophore with theophylline and acetylene moieties was constructed by using a fragment-based drug design and a series of twenty theophylline containing acetylene conjugates were designed and synthesized, and all the compounds were evaluated by enzyme-based in vitro α-amylase inhibition activity. The in vitro evaluation revealed that most of the compounds displayed good inhibitory activities, and among them nine analogs 13–15, 20, 21 and 24–27 were exhibited more or nearly as equipotent inhibitory activity with IC50 values 1.11 ± 0.07, 1.14 ± 0.17, 1.07 ± 0.01 and 1.21 ± 0.03, 1.33 ± 0.09, 1.17 ± 0.01, 1.05 ± 0.02, 1.61 ± 0.04, 1.02 ± 0.03 μM respectively, as compared with standard, acarbose 1.37 ± 0.26 μM. Further, molecular docking simulation studies were done to identify the interactions and binding mode of synthesized analogs at binding site of α-amylase enzyme (PBD ID: 4GQR). Among the synthesized analogs, two compounds 25 and 27 were selected on the basis of α-amylase inhibition activity and evaluated for in vivo anti-diabetic activity by High Fat Diet-Streptozotocin (HFD-STZ) model in normal rats. At the dose of 10 mg/kg, bw, po these compounds have significantly reduced Plasma Glucose level in rats as compared to pioglitazone. The anti-diabetic activity results showed that the animal treated with the compounds 25 and 27 could better reverse and control the progression of the disease compared to the standard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call