Abstract

Psoriasis is a kind of chronic inflammatory skin disorder, while the long-term use of conventional therapies for this disease are limited by severe adverse effects. Novel small molecules associated with new therapeutic mechanisms are greatly needed. It is known that phosphodiesterase 4 (PDE4) plays a central role in regulating inflammatory responses through hydrolyzing intracellular cyclic adenosine monophosphate (cAMP), making PDE4 to be an important target for the treatment of inflammatory diseases (e.g. psoriasis). In our previous work, we identified a series of novel PDE4 inhibitors with a tetrahydroisoquinoline scaffold through structure-based drug design, among which compound 1 showed moderate inhibition activity against PDE4. In this study, a series of novel tetrahydroisoquinoline derivatives were developed based on the crystal structure of PDE4D in complex with compound 1. Anti-inflammatory effects of these compounds were evaluated, and compound 36, with high safety, permeability and selectivity, exhibited significant inhibitory potency against the enzymatic activity of PDE4D and the TNF-α release from the LPS-stimulated RAW 264.7 and hPBMCs. Moreover, an invivo study demonstrated that a topical administration of 36 achieved more significant efficacy than calcipotriol to improve the features of psoriasis-like skin inflammation. Overall, our study provides a basis for further development of tetrahydroisoquinoline-based PDE4 inhibitors against psoriasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.