Abstract
The dysregulation of c-Met kinase has emerged as a significant contributing factor for the occurrence, progression, poor clinical outcomes and drug resistance of various human cancers. In our ongoing pursuit to identify promising c-Met inhibitors as potential antitumor agents, a docking study of the previously reported c-Met inhibitor 7 revealed a large unoccupied hydrophobic pocket, which could present an opportunity for further exploration of structure-activity relationships to improve the binding affinity with the allosteric hydrophobic back pocket of c-Met. Herein we performed structure-activity relationship and molecular modeling studies based on lead compound 7. The collective endeavors culminated in the discovery of compound 21j with superior efficacy to 7 and positive control foretinib by increasing the hydrophobic interaction with the hydrophobic back pocket of c-Met active site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.