Abstract
Ferroptosis is a new type of programmed cell death characterized by iron-dependent lipid peroxidation, during which glutathione peroxidase 4 (GPX4) plays an essential role and is well-recognized as a promising therapeutic target for cancer treatment. Although some GPX4 degradation molecules have been developed to induce ferroptosis, the discovery of GPX4 degraders with hydrophobic tagging (HyT) as an innovative approach is more challenging. Herein, we designed and synthesized a series of HyT degraders by linking the GPX4 inhibitor RSL3 with a hydrophobic and bulky group of adamantane. Among them, compound R8 is a potent degrader (DC50, 24h = 0.019 μM) which can effectively degrade GPX4 in a dose- and time-dependent manner. Furthermore, compound R8 exhibited superior in vitro antitumor potency against HT1080 and MDA-MB-231 cell lines with IC50 values of 24 nM and 32 nM respectively, which are 4 times more potent than parental compound RSL3. Mechanistic investigation evidenced that R8 consumes GPX4 protein mainly through the ubiquitin proteasome (UPS) and enables to induce the accumulation of LPO, thereby triggering ferroptosis. Our work presented the novel GPX4 degrader of R8 by HyT strategy, and provided a promising pathway of degradation agents for the treatment of ferroptosis relevant diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.