Abstract

Exorbitant aldosterone is closely associated with various severe diseases, including congestive heart failure and chronic kidney disease. As aldosterone synthase is the pivotal enzyme in aldosterone biosynthesis, its inhibition constitutes a promising treatment for these diseases. Via a structure-based approach, a series of pyridyl substituted 3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-ones were designed as inhibitors of aldosterone synthase. Six compounds (5j, 5l, 5m 5w, 5x and 5y) distinguished themselves with potent inhibition (IC50 <100 nmol/L) and high selectivity over homogenous 11β-hydroxylase. As the most promising compound, 5x exhibited an IC50 of 12 nmol/L and an excellent selectivity factor (SF) of 157, which are both superior to those of the reference fadrazole (IC50 = 21 nmol/L, SF = 7). Importantly, 5x showed no inhibition against steroidogenic CYP17, CYP19 and a panel of hepatic CYP enzymes indicating an outstanding safety profile. As it manifested satisfactory pharmacokinetic properties in rats, compound 5x was considered as a drug candidate for further development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call