Abstract

Oxidative stress plays a crucial role in neurological diseases, resulting in excessive production of reactive oxygen species, mitochondrial dysfunction and cell death. In this work, we designed and synthesized a series of tetramethylpyrazine (TMP) derivatives and investigated their abilities for scavenging free radicals and preventing against oxidative stress-induced neuronal damage in vitro. Among them, compound 22a, consisted of TMP, caffeic acid and a nitrone group, showed potent radical-scavenging activity. Compound 22a had broad neuroprotective effects, including rescuing iodoacetic acid-induced neuronal loss, preventing from tert-butylhydroperoxide (t-BHP)-induced neuronal injury. Compound 22a exerted its neuroprotective effect against t-BHP injury via activation of the phosphatidyl inositol 3-kinase (PI3K)/Akt signaling pathway. Furthermore, in a rat model of permanent middle cerebral artery occlusion, compound 22a significantly improved neurological deficits, and alleviated the infarct area and brain edema. In conclusion, our results suggest that compound 22a could be a potential neuroprotective agent for the treatment of neurological disease, particularly ischemic stroke.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call