Abstract
Phosphatidylinositol 3-kinase (PI3K) signaling is among the most common alterations in cancer and has become a key target for cancer drug development. Based on a 4-methyl quinazoline scaffold, we designed and synthesized a novel series of bivalent PI3K inhibitors with different linker lengths and types. Bivalent PI3K inhibitor 27 demonstrates improved PI3K potency and antiproliferative cell activity, relative to the corresponding monovalent inhibitor 11. Compound 27 also significantly blocks the PI3K signal pathway, induces cell cycle arrest in G1 phase, and inhibits colony formation and cell migration. Furthermore, compound 27 shows dose-dependent anticancer efficacies in a HGC-27 xenograft mice model. Overall, this work provides a possible strategy to discover novel PI3K inhibitors for the treatment of cancers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.