Abstract

Despite the success of imatinib in CML therapy through Bcr-Abl inhibition, acquired drug resistance occurs over time in patients. In particular, the resistance caused by T315I mutation remains a challenge in clinic. Herein, we embarked on a structural optimization campaign aiming at discovery of novel Bcr-Abl inhibitors toward T315I mutant based on previously reported dibenzoylpiperazin derivatives. We proposed that incorporation of flexible linker could achieve potent inhibition of Bcr-AblT315I by avoiding steric clash with bulky sidechain of Ile315. A library of 28 compounds with amino acids as linker has been developed and evaluated. Among them, compound AA2 displayed the most potent activity against Bcr-AblWT and Bcr-AblT315I, as well as toward Bcr-Abl driven K562 and K562R cells. Further investigations indicated that AA2 could induce apoptosis of K562 cells and down regulate phosphorylation of Bcr-Abl. In summary, the compounds with amino acid as novel flexible linker exhibited certain antitumor activities, providing valuable hints for the discovery of novel Bcr-Abl inhibitors to overcome T315I mutant resistance, and AA2 could be considered as a candidate for further optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.