Abstract

Oligonucleotides containing an immune-stimulatory motif and an immune-regulatory motif act as antagonists of Toll-like receptor (TLR)7 and TLR9. In the present study, we designed and synthesized oligonucleotide-based antagonists of TLR7, 8 and 9 containing a 7-deaza-dG or arabino-G modification in the immune-stimulatory motif and 2′-O-methylribonucleotides as the immune-regulatory motif. We evaluated the biological properties of these novel synthetic oligoribonucleotides as antagonists of TLRs 7, 8 and 9 in murine and human cell-based assays and in vivo in mice and non-human primates. In HEK293, mouse and human cell-based assays, the antagonist compounds inhibited signaling pathways and production of a broad range of cytokines, including tumour necrosis factor alpha (TNF-α), interleukin (IL)-12, IL-6, interferon (IFN)-α, IL-1β and interferon gamma-induced protein (IP)-10, mediated by TLR7, 8 and 9. In vivo in mice, the antagonist compounds inhibited TLR7- and TLR9-mediated cytokine induction in a dose- and time-dependent fashion. Peripheral blood mononuclear cells (PBMCs) obtained from antagonist compound-treated monkeys secreted lower levels of TLR7-, 8- and 9-mediated cytokines than did PBMCs taken before antagonist administration. The antagonist compounds described herein provide novel agents for the potential treatment of autoimmune and inflammatory diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.