Abstract

A series of novel l-ascorbic acid derivatives bearing aryl and alkyl sulfonate substituents were synthesized and characterized. In vitro anticancer evaluation against MCF-7 (breast) and A-549 (lung) cancer cell lines revealed potent activity for most of the compounds, with 2b being equipotent to the standard drug colchicine against MCF-7 (IC50 = 0.04 μM). Notably, compound 2b displayed 89-fold selectivity for MCF-7 breast cancer over MCF-10A normal breast cells. Derivatives with two sulfonate groups (2a-g, 3a-g) exhibited superior potency over those with one sulfonate (4a-c,5g, 6b). Compounds 2b and 2c potently inhibited tubulin polymerization in A-549 cancer cells (73.12 % and 62.09 % inhibition, respectively), substantiating their anticancer potential through microtubule disruption. Molecular docking studies showed higher binding scores and affinities for these compounds at the colchicine-binding site of α, β-tubulin compared to colchicine itself. In-silico ADMET predictions indicated favourable drug-like properties, with 2b exhibiting the highest binding affinity. These sulfonate derivatives of l-ascorbic acid represents promising lead scaffolds for anticancer drug development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call