Abstract
The spatial and temporal control of bioactivity of small molecules by light (photopharmacology) constitutes a promising approach for study of biological processes and ultimately for the treatment of diseases. In this study, we investigated two different "caged" antibiotic classes that can undergo remote activation with UV-light at λ = 365 nm, via the conjugation of deactivating and photocleavable units through a short synthetic sequence. The two widely used antibiotics vancomycin and cephalosporin were thus enhanced in their performance by rendering them photoresponsive and thereby suppressing undesired off-site activity. The antimicrobial activity against Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 29213, S.aureus ATCC 43300 (MRSA), Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853 could be spatiotemporally controlled with light. Both molecular series displayed a good activity window. The vancomycin derivative displayed excellent values against Gram-positive strains after uncaging, and the next-generation caged cephalosporin derivative achieved good and broad activity against both Gram-positive and Gram-negative strains after photorelease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.