Abstract
A series of simplified ring-opened resorcylic acid lactone (RAL) derivatives were conveniently synthesized to target FLT3 and its mutants either irreversibly or reversibly. Our design of covalent FLT3 inhibitors is based on cis-enone RALs (e.g., L-783,277) that have a β-resorcylic acid as the core structure. The designed compounds contain three types of Michael acceptors (acrylamide, vinylsulfonamide and maleimide) as potential covalent traps of a cysteine residue at the binding site of kinases. A variety of functional substitutions were also introduced to maximize the binding interactions. Biological evaluations revealed that compound 17, despite the presence of a highly reactive maleimide Michael acceptor, is a potent covalent FLT3 inhibitor which shows some specificity in cellular assays. On the other hand, compounds 2 and 6 containing acrylamide or vinylsulfonamide groups are reversible towards FLT3 binding, and are potent and selective inhibitors of mutant FLT3-ITD versus wt-FLT3. They also inhibit cell proliferation in FLT3-ITD expressing cell line MV-4-11 as compared to wt-FLT3 expressing cell line THP-1 and non-FLT3 cell lines (K562, HL60 and Hek-293T).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.