Abstract

As a member of the signal transducer and activator of transcription (STAT) family, STAT3 plays a critical role in several biological pathways such as cell proliferation, migration, survival, and differentiation. Due to abnormal continuous activation in tumors, inhibition of STAT3 has emerged as an attractive approach for the treatment of various cancer cells. Herein, we report a series of novel STAT3 inhibitors based on benzo[b]thiophene 1,1-dioxide scaffold and evaluated their anticancer potency. Among them, compound 8b exhibited the best activity against cancer cells. Compound 8b induced apoptosis and blocked the cell cycle. Meanwhile, 8b reduced intracellular ROS content and caused the loss of mitochondrial membrane potential. Further research revealed that 8b significantly blocked STAT3 phosphorylation and STAT3-dependent dual-luciferase reporter gene experiments showed that compound 8b has a marked inhibition of STAT3-mediated Firefly luciferase activity. Molecular modeling studies revealed compound 8b occupied the pocket well with the SH2 domain in a favorable conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call