Abstract

Modern drug discovery efforts rely, to a large extent, on lead compounds from two classes of small organic molecules; namely, natural products (i.e., secondary metabolites) and designed compounds (i.e., synthetic molecules). In this article, we demonstrate how these two domains of lead compounds can be merged through total synthesis and molecular design of analogs patterned after the targeted natural products, whose promising biological properties provide the motivation. Specifically, the present study targeted the naturally occurring biyouyanagins A and B and their analogs through modular chemical synthesis and led to the discovery of small organic molecules possessing anti-HIV and anti-arenavirus properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.