Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase A (DYRK1A) is a potential drug target for diabetes. The DYRK1A inhibitor can promote β cells proliferation, increase insulin secretion and reduce blood sugar in diabetes. In this paper, a series β-carboline-cinnamic acid skeletal derivatives were designed, synthesized and evaluated to inhibit the activity of DYRK1A and promote pancreatic islet β cell proliferation. Pharmacological activity showed that all of the compounds could effectively promote pancreatic islet β cell proliferation at a concentration of 1 μM, and the cell viability of compound A1, A4 and B4 reached to 381.5 %, 380.2 % and 378.5 %, respectively. Compound A1, A4 and B4 could also inhibit the expression of DYRK1A better than positive drug harmine. Further mechanistic studies showed that compound A1, A4 and B4 could inhibit DYRK1A protein expression via promoting its degradation and thus enhancing the expression of proliferative proteins PCNA and Ki67. Molecular docking showed that β-carboline scaffold of these three compounds was fully inserted into the ATP binding site and formed hydrophobic interactions with the active pocket. Besides, these three compounds were predicted to possess better drug-likeness properties using SwissADME. In conclusion, compounds A1, A4 and B4 were potent pancreatic β cell proliferative agents as DYRK1A inhibitors and might serve as promising candidates for the treatment of diabetes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.