Abstract

Previously, we have confirmed that the antiviral activities of the chromone derivatives were controlled by the type as well as the position of the substituents attached to the chromone core structure. In the course of our ongoing efforts to optimize the antiviral activity of the chromone derivatives, we have been attempting to derivatize the chromone scaffold via introduction of various substituents. In this proof-of-concept study, we introduced a 3-amino-4-piperazinylphenyl functionality to the chromone scaffold and evaluated the antiviral activities of the resulting chromone derivatives. The synthesized 2-(3-amino-4-piperazinylphenyl)-chromones showed severe acute respiratory syndrome-corona virus (SARS-CoV)-specific antiviral activity. In particular, the 2-pyridinylpiperazinylphenyl substituents provided the resulting chromone derivatives with selective antiviral activity. Taken together, this result indicates the possible pharmacophoric role of the 2-pyridinylpiperazine functionality attached to the chromone scaffold, which warrants further in-depth structure-activity relationship study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call