Abstract
Next generation antimicrobial therapeutics are desperately needed as new pathogens with multiple resistance mechanisms continually emerge. Two oxaboroles, tavaborole and crisaborole, were recently approved as topical treatments for onychomycosis and atopic dermatitis, respectively, warranting further studies into this privileged structural class. Herein, we report the antimicrobial properties of 3-substituted-2(5H)-oxaboroles, an unstudied family of medicinally relevant oxaboroles. Our results revealed minimum inhibitory concentrations as low as 6.25 and 5.20 μg/mL against fungal (e.g., Penicillium chrysogenum) and yeast (Saccharomyces cerevisiae) pathogens, respectively. These oxaboroles were nonhemolytic and nontoxic to rat myoblast cells (H9c2). Structure-activity relationship studies suggest that planarity is important for antimicrobial activity, possibly due to the effects of extended conjugation between the oxaborole and benzene rings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.