Abstract

Novel chiral tetralin compounds were designed and synthesized, and their antifungal activities in vitro were tested. The results showed that all of target compounds had potent antifungal activities, and were stronger than that of control compounds tetrahydroisoquinolines. The binding model of lead molecules in the active site of CYP51 of Candida albicans showed that lead compound specifically interacted with the amino acids residues in the active site, without binding with the heme of CYP51, which was different from azole antifungal drugs. The present study might afford a novel lead molecule to develop non-azole CYP51 inhibitors of fungi.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.