Abstract

In current research, five series of mono- and di-substituted piperazine derivatives have been synthesized. For di-substituted derivatives, ciprofloxacin was selected and hybrids were synthesized via substitution at piperazinyl-N4. In vitro antibacterial studies of all synthesized compound were carried out against American Type Culture Collection (ATCC) strains; E. coli (ATCC 25922), P. aeruginosa (ATCC 15442), K. pneumoniae (ATCC 1705), B. subtilis (ATCC 6633) and S. aureus (ATCC 6538). The potent series of compounds were further evaluated for their potential against clinically isolated resistant strains of E. coli, P. aeruginosa, S. aureus, and S. hemolytic. The reaction of piperazinyl-NH of ciprofloxacin with selected drugs resulted in pronounced growth inhibition of standard as well as resistant bacterial strains. Hybrid compounds 14b, 16a, 16d and CGS-20 showed excellent bacterial growth inhibition against standard and resistant strains. In vitro results were further correlated by using in silico tools. Molecular docking studies were carried out using MOE (Molecular Operating Environment) software. DNA gyrase used as a target and all compounds were docked against this specific target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.