Abstract

Plant viral diseases, known as “plant cancer”, with high contagiosity can substantially reduce crop quality and yield. To identify potential anti-tobacco mosaic virus (TMV) agents with different mechanisms, a series of novel α-aminophosphonate derivatives containing a chalcone moiety were designed and synthesized. Bioassay results revealed that some target compounds exhibited improved curative activity against TMV in vivo, and the EC50 value of compound B3 was 356.7 mg L−1. The activities of the defensive enzymes POD and CAT from tobacco leaves treated with B3 and B17 showed that these target compounds could improve the photosynthetic ability of the leaves and activate plant host resistance against TMV infection. The binding constant between B3 and TMV Coat Protein (CP) (2.51 × 108 M−1), calculated by the fluorescence titration experiment and docking results, revealed that B3 has a strong interaction with TMV CP. Further docking analysis revealed that B3 was embedded between two layers of the TMV CP, which was consistent with the 2:1 binding mode of TMV CP and B3 determined by the binding affinity experiment. The TEM morphological study of TMV treated with B3 and B17 indicated that this series of target compounds may trigger the disassembly of TMV by interacting directly with TMV CP. This study provides new insight for the discovery of antiviral compounds with two different mechanisms of action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.