Abstract
A novel Motional Stark Effect spectroscopy system has been designed for application at the DIII-D tokamak. The system is optimized for studies of the poloidal and toroidal magnetic field in the plasma pedestal region with frame rates of up to 10kHz. Light from an existing high-photon-throughput collection lens is analyzed using four single-channel f/2.8 Czerny-Turner spectrometers that use custom-made lens systems instead of mirrors. Each spectrometer has two separate outgoing legs and is operated in a positive grating order, which allows for simultaneous observations of D-alpha and D-beta spectra. Forward modeling using the code FIDASIM shows a radial resolution of the system close to 0.6cm and sufficiently good spectral resolution when masking the high throughput light collection lens in the horizontal direction to avoid overly strong Doppler broadening of beam emission lines. Moreover, a detailed sensitivity study considering realistic levels of readout and photon noise shows that the poloidal and toroidal magnetic field strengths can be inferred with an uncertainty of less than 1%, which will allow the inference of changes of the plasma current during transient events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.