Abstract

A new single-phase power factor corrector (PFC) based on the Sheppard-Taylor topology is studied. Compared with conventional PFCs, this topology facilitates a better input current tracking, lower voltage stresses across the devices and larger output voltage range for the same operating area. The converter is integrated as a PFC at the DC-end of a single-phase diode bridge. Pulse-width-modulated (PWM) multi-loops control schemes are proposed and developed in order to ensure a unity power factor at the AC-source side and a regulated voltage at the DC-load side. The first control method uses the simple and robust hysteretic-based controller; the second employs a conventional PI regulator; and the third is based on the model nonlinearity compensation approach. The design of the last two control methods is based on the knowledge of a mathematical model that would accurately represent the converter. This model is developed in this paper using the state-space averaging technique, and then the small-signal transfer functions of the converter are derived for linear control design purpose. The performance of the different control strategies is evaluated through simulation experiments carried out on a numerical version of the converter. The implemented model of the converter is obtained by using the switching function technique. The control system is tested under both rated and disturbed operating conditions. The system performance is evaluated in terms of source current total harmonic distortion (THD), input power factor, DC voltage stabilization, and regulation following load variations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call