Abstract

We have developed highly interleaved zigzag-shaped electrodes for collecting charge on the readout plane of various micropattern gaseous detectors (MPGDs), including gas electron multiplier (GEM) and micromega detectors. An optimized zigzag pad (or strip) anode can greatly enhance charge sharing among neighboring pads compared to traditional straight strip or rectangular pad designs and as a result can deliver excellent position resolution with minimal channel count, while exhibiting a virtually uniform response across the detector. We have systematically studied the effects of varying the parameters that define the zigzag geometry using simulations and have measured several printed circuit boards (PCBs) comprising a range of zigzag designs. Recently, we have employed laser ablation to generate zigzag patterns with pad-to-pad gaps smaller than 1 mil (or 25 μm). Reducing the gap well below the 3-mil limit imposed by traditional chemical etching has allowed the production of zigzag electrodes with unprecedentedly small feature sizes. In turn, laser-etched zigzag PCBs were shown to exhibit markedly improved performance over earlier generation PCBs, with position resolutions below 50 μm for a 2-mm pitch. This article will explore in detail the dependence of the position resolution on the structural parameters of a zigzag-shaped anode, specifically for the case of a quadruple GEM detector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.