Abstract

The polymer class of poly(2-oxazoline)s currently is under intensive investigation due to the versatile properties that can be tailor-made by the variation and manipulation of the functional groups they bear. In particular their utilization in the biomedic(in)al field is the subject of numerous studies. Given the mechanism of the cationic ring-opening polymerization, a plethora of synthetic strategies exists for the preparation of poly(2-oxazoline)s with dedicated functionality patterns, comprising among others the functionalization by telechelic end-groups, the incorporation of substituted monomers into (co)poly(2-oxazoline)s, and polymeranalogous reactions. This review summarizes the current state-of-the-art of poly(2-oxazoline) preparation and showcases prominent examples of poly(2-oxazoline)-based materials, which are retraced to the desktop-planned synthetic strategy and the variability of their properties for dedicated applications.

Highlights

  • Since their discovery in 1966 [1,2,3,4], the class of poly(2-oxazoline)s has received great interest due to its versatility in enabling the preparation of materials with tailor-made properties

  • This review aims to summarize the state-of-the-art of “poly(2-oxazoline) synthesis” and in particular to correlate the targeted properties of the poly(2-oxazoline)s and the materials derived from that class of polymers with the strategies required for their synthesis

  • While this review focuses on the synthesis of poly(2-oxazoline)s and copoly(2-oxazoline)s as well as the derived materials, the properties of the polymers and materials themselves will be discussed only for dedicated examples, and the reader interested in more and/or more general details is referred to recent reviews in that area [11,12,13,14,15,16,17,18,19,20]

Read more

Summary

Introduction

Since their discovery in 1966 [1,2,3,4], the class of poly(2-oxazoline)s has received great interest due to its versatility in enabling the preparation of materials with tailor-made properties. The hydrolysis of poly(2-oxazoline)s yields poly(ethylene imine)s (Scheme 1), which opens a whole new area of synthetic strategies for (polymeranalogous) polymer modification, even further expanding the “toolbox” of chemical findings for fine-tuning the poly(2-oxazoline)-based materials with numerous potential applications in the biomedical sector [7,8,9]. Reaction scheme for the methyl tosylate-initiated cationic ring-opening polymerization CROP of 2-oxazolines for the example of the block copolymerization of 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline, yielding the diblock copolymer poly(2-methyl-2-oxazoline)-block-poly(2-ethyl-2-oxazoline) after termination with water (top). The term “polymeranalogous reactions” is used for reactions altering the side-chain functionalities; reports of the usage of semitelechelic and telechelic poly(2-oxazoline)s as macroinitiators have been summarized in the “initiator” section

Unconventional Initiators
Metal Cations as Initiators
Iodine-Based Initiators
Advanced Organic Initiators
Initiators and Terminating Agents with Targeted Properties
Combination of CROP and Controlled-Radical Polymerizations
Grafting from Pending 2-oxazoline Units
Grafting from Surfaces
Grafting-onto Polymers
Grafting onto Surfaces
Multifunctional Tosylate and Triflate Initiators
Further Multifunctional Initiators
Hyperstar Polymers and Second Generation Star Geometries
Unconventional Solvents for the Performance of the CROP of 2-oxazolines
Optical Rotation of Polymers with Pending 2-Oxazolinyl Substituents
Click-Reactions Involving Olefinic Moieties
Click-Reactions Involving Alkines
Various Polymeranalogous Reactions
Partial Hydrolysis
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.