Abstract

Compared with other energy storage technologies, lithium-ion batteries (LIBs) have been widely used in many area, such as electric vehicles (EV), because of their low cost, high voltage, and high energy density. Among all kinds of materials for LIB, layer-structured ternary material Ni-rich lithium transition-metal oxides (LiNi1−x−yCoxMnyO2 (Ni-rich NCM)) have regarded as one of the most promising cathode materials with its outstanding performance. Herein, we have reviewed used materials and performed modification methods to enhance capacity retention and cycling stability of Ni-rich NCM. Then we offer a comprehensive review of favorable materials with comparison of capacity retention between pristine and modified NCM in the surface coating, doping, shell and gradient form. Indeed, considerable development of the Ni-rich NCM technology, which started with the implementation of a simple coating method, has been achieved so far.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.