Abstract

High efficiency small molecule organic light emitting devices (OLEDs) based on light emission from an electrophosphorescent dopant dispersed in an organic host matrix are well known. Achieving blue phosphorescent OLEDs is particularly challenging because the host triplet energy should ideally be > 2.8 eV to prevent back-transfer of energy from the dopant to the host matrix resulting in loss of efficiency. A design strategy for developing new host materials with high triplet energies by using phosphine oxide (P=O) moieties as points of saturation in order to build sublimable, electron transporting host materials starting from small, wide bandgap molecular building blocks (i.e., biphenyl, phenyl, naphthalene, octafluorobiphenyl, and N-ethylcarbazole) is described. Electrophosphorescent OLEDs using the organic phosphine oxide compounds as host materials for the sky blue organometallic phosphor, iridium(III)bis(4,6-(di-fluorophenyl)-pyridinato-N,C2,) picolinate (FIrpic) give maximum external quantum efficiencies of ~ 8% and maximum luminance power efficiencies up to 25 lm/W.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call