Abstract

Recently, satellite broadband communication services using Ka-band are emerging all over the world, some of them with capacities in excess of 100 Gbps. However, as the radio bandwidth resources become exhausted, high-speed optical communication can be used instead to achieve ultra-broadband communications. The National Institute of Information and Communications Technology (NICT) in Japan has more than 20 years of experience in R&D of space laser communications, with important milestones like ETS-VI (Engineering Test Satellite VI), OICETS, and SOTA. We are currently developing a laser-communication terminal called “HICALI”, which goal is to achieve 10 Gbps-class space communications in the 1.5-μm band between Optical Ground Stations (OGSs) and a next generation high-throughput satellite (called ETS-IX) with a hybrid communication system using radio and optical frequencies, which will be launched into a geostationary orbit in 2021. The development of test and a breadboard model for HICALI has been conducted for several years and we are now carrying out an engineering model as well as designing the OGSs segment. In this paper, we describe concepts and current design status of the HICALI system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.