Abstract

Design stage optimization of an industrial low-density polyethylene (LDPE) tubular reactor is carried out for two simultaneous objectives: maximization of monomer conversion and minimization of normalized side products (methyl, vinyl, and vinylidene groups), both at the reactor end, with end-point constraint on number-average molecular weight ( M n , f ) in the product. An inequality constraint is also imposed on reactor temperature to avoid run-away condition in the tubular reactor. The binary-coded elitist non-dominated sorting genetic algorithm (NSGA-II) and its jumping gene (JG) adaptations are used to solve the optimization problem. Both the equality and inequality constraints are handled by penalty functions. Only sub-optimal solutions are obtained when the equality end-point constraint on M n , f is imposed. But, correct global optimal solutions can be assembled from among the Pareto-optimal sets of several problems involving a softer constraint on M n , f . A systematic approach of constrained-dominance principle for handling constraints is applied for the first time in the binary-coded NSGA-II-aJG and NSGA-II-JG, and its performance is compared to the penalty function approach. A three-objective optimization problem with the compression power (associated with the compression cost) as the third objective along with the aforementioned two objectives, is also studied. The results of three-objective optimization are compared with two different combinations of two-objective problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.