Abstract

We herein report the efficient synthesis of symmetrical bis-benzoxazines by substituted salicylaldehydes and alkyl diamines. The substituted salicylaldehydes (1a-d) and alkyl diamines (2a-b) on reaction synthesize Schiff's bases 3a-h. These compounds on reduction with NaBH4 in dry methanol yielded 2,2′-((alkyl-1,2-diylbis (azanediyl)) bis(methylene))disubstituted phenol, 4a-h in good yield. The preferable 1,2-bis(6-substituted-2H-benzo[e][1,3]oxazin-3(4H)-yl)ethanes, 5a-h formed when the compounds 4a-h undergo an internal Mannich reaction with formaldehyde. Different spectroscopic methods prove the formation of all the compounds. The compounds 3g, 4g, 5c, and 5g showed excellent antibacterial activity against S. aureus, E. coli, S. Typhi, and B. subtilis, antifungal activity against A. flavus, C. Albicans, A. niger, and C. oxysporum with MIC values of 6.25 µg/ml and anti-TB activity against M. tuberculosis for which is equivalent to the standard drug. Furthermore, studies on the antioxidant activity of the compounds 3b, 3c, 3g, 4c, 5b, and 5f revealed that they have excellent antioxidant activity. To comprehend the electronic behavior of compound 5e, Density Functional Theory estimations at the DFT/B3LYP level via 6–31G++ (d, p) replicate the structure and geometry. The first-order hyperpolarizability calculation finds the non-linear visual feature of compound 5e. Finally, HOMO and LUMO analysis were used for the charge transfer interface between the structures. Against Cytochrome c Peroxidase (2 × 08), the compounds 3c and 4c exhibited good docking properties in Molecular docking studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call