Abstract

Clifford (geometric) algebra is a natural and intuitive way to model geometric objects and their transformations. It has important applications in a variety of fields, including robotics, machine vision and computer graphics, where it has gained a growing interest. This paper presents the design space exploration of parallel embedded architectures that natively support Clifford algebra with different costs, performance and precision. Results show an effective 5x average speedup for Clifford products compared with a software library developed specifically for Clifford algebra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.