Abstract

AbstractWind turbine design encompasses many different aspects including aerodynamic, structural, electrical, and control system design. To achieve optimal plant performance, a system design approach is utilized in which the performance of the whole wind turbine is evaluated and quantified during operational scenarios with subsystem interactions. In this paper, the design for a Segmented Ultralight Morphing Rotor (SUMR) 50‐MW wind turbine is presented utilizing levelized cost of energy (LCOE) for design choices, with additional quantification of simulated performance shortcomings at the 50‐MW scale. The multi‐disciplinary design process results in a final ultra‐scale turbine configuration that outperforms other existing offshore wind farms regarding the LCOE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.