Abstract
This paper presents a new mobile robot design based on hybridization of the mobile platform and manipulator arm as one entity for robot locomotion as well as manipulation. The novel mechanical design is described in detail. To analyse the design, a virtual prototype tool was developed with ADAMS software for multi-body dynamic motion simulations of the complete robotic system. The simulation results were used to study the robot's mobility characteristics through animations of different possible tasks that require various locomotion and manipulation capabilities. The ability to visualize and validate various robot mobility cases and to study its functionality in the early design stages aided in optimizing the design and hence dramatically reduce physical prototype development time and cost. The design optimization process also involved proper components selection. Moreover, the simulations enabled us to define motor torque requirements and maximize end-effector payload capacity for different robot configurations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.