Abstract

This study focused on the design and the preparation method of a new biomaterial, Mg30Zn30Sn30Sr5Bi5 (at%) alloy, and its simulation and property analyses. Based on the comprehensive consideration of the preparation of high-entropy alloys, the selection of biomaterial elements, and the existing research results of common Mg-based materials, the atomic percentage of various elements, that is, Mg:Zn:Sn:Sr:Bi = 30:30:30:5:5, was determined. Using the theoretical methods of thermodynamic performance analysis and solidification performance analysis, the proposed composition was simulated and analyzed. The analysis results showed that the mechanical properties of the new material can meet the design requirements, and it can be prepared in physical form. XRD, SEM, PSD, compression tests, and other experimental tests were conducted on the material, and the alloy composition and distribution law showed various characteristics, which conformed to the “chaotic” characteristics of high-entropy alloys. The elastic modulus of the material was 17.98 GPa, which is within the 0–20 GPa elastic modulus range of human bone. This means that it can avoid the occurrence of stress shielding problems more effectively during the material implantation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call