Abstract

In this paper, a novel tubular solar air heater is introduced. In this air heater, the hot boundary layer is drawn into the absorber tube and can provide thermal energy at moderate temperatures. Several different cases were simulated and a correlation was proposed to predict the collector’s effectiveness as a function Rayleigh number and Reynolds number. An equation was derived to find the effectiveness of this collector. Finally, a real case was studied with non-uniform solar flux distribution, as well as radiation heat loss. Good agreement was found between the results and those derived by the proposed analytical method. For different suction values, the first-law and the second-law efficiencies were calculated. Based on the exergy analysis, exergy destruction in absorption is the dominant factor that is unavoidable in low-temperature collectors. It was shown that there is an optimum suction value at which the second-law efficiency is maximized. At the optimum point, temperature rise can reach 54 K, which is hardly possible with a flat plate collector. Based on the exergy analysis, the relation between tube wall temperature and air outlet temperature in their dimensionless forms at the optimum working condition was derived, and it was shown that effectiveness at the optimum working condition is around 0.5. This means that the air temperature rise shall be half of the temperature difference between collector wall and the ambient temperatures. A high outlet temperature besides the low cost of construction and maintenance are the main advantages of this air heater. With such a high temperature rise, this type of collector can increase the use of solar energy in domestic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call