Abstract

This paper describes design, Simulation and manufacturing procedures of HIRAD - a teleoperated Tracked Surveillance UGV for military, Rescue and other civilian missions in various hazardous environments. A Double Stabilizer Flipper mechanism mounted on front pulleys enables the Robot to have good performance in travelling over uneven terrains and climbing stairs. Using this Stabilizer flipper mechanism reduces energy consumption while climbing the stairs or crossing over obstacles. The locomotion system mechanical design is also described in detail. The CAD geometry 3D-model has been produced by CATIA software. To analyze the system mobility, a virtual model was developed with ADAMS Software. This simulation included different mobility maneuvers such as stair climbing, gap crossing and travelling over steep slopes. The simulations enabled us to define motor torque requirements. We performed many experiments with manufactured prototype under various terrain conditions Such as stair climbing, gap crossing and slope elevation. In experiments, HIRAD shows good overcoming ability for the tested terrain conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.