Abstract
Today’s bulk power system is massive, complex, and very dynamic. The U.S. power grid spans from coast to coast and even as far reaching as Canada. With the addition of new technologies such as renewable energies and power electronics to aid in power conversion and control, the power system grows more complex by the day. The most common approach of analyzing power system stability is through computer modeling and simulation. Due to the vast size and inaccessibility of transmission systems, real time testing can prove difficult. The motivation of this project was to design, simulate, and construct an IEEE 14 bus power system for future use in a lab setting to test, in real time, novel control techniques for various forms of generation and their impacts on the stability of the grid. This thesis presents the theory used to design and construct an IEEE 14-bus power system. A comparison of results from modeling and simulation with actual lab data obtained from the constructed test set up.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.