Abstract

A design sensitivity analysis for the transient response of the non-viscously damped dynamic systems is presented. The non-viscously (viscoelastically) damped system is widely used in structural vibration control. The damping forces in the system depend on the past history of motion via convolution integrals. The non-viscos damping is modeled by the generalized Maxwell model. The transient response is calculated with the implicit Newmark time integration scheme. The design sensitivity analysis method of the history dependent system is developed using the adjoint variable method. The discretize-then-differentiate approach is adopted for deriving discrete adjoint equations. The accuracy and the consistency of the proposed method are demonstrated through a single dof system. The proposed method is also applied to a multi-dof system. The validity and accuracy of the sensitivities from the proposed method are confirmed by finite difference results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.