Abstract
This paper deals with the structural optimization of multilaminated composite plate structures of arbitrary geometry and layup, using single layer higher order shear deformation theory discrete models. The structural and sensitivity analysis formulation is developed for a family of C° Lagrangian elements. The design sensitivities of static response for objective and/or constraint functions, such as maximum displacements, stress failure criterion and elastic strain energy, with respect to ply angles and ply thickness are presented. The objectives of the design are the minimization of the structural elastic strain energy, minimization of maximum deflection and/or the minimization of the structure volume. The accuracy and relative performance of the proposed discrete models are compared and discussed among developed elements and alternative models. Several test designs are optimized to show the applicability of the proposed refined discrete models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.