Abstract
This paper reports a novel monitoring technique of bearings' bidirectional load (axial and radial) based on a smart sensor coating, which is screen printed onto the surface of a cross-shaped steel substrate. To ensure the accuracy and stability of measurement as well as the durability of the printed coating, the developed prototype is built according to design rules commonly used in electronic circuits. The finite element model (FEM) is used to predict the mechanical property of the tested substrate under either unidirectional or bidirectional loads. Regarding the output voltage of the piezoelectric sensor, experimental results are revealed to be well-corelated to the numerical simulation. It is pointed out that the output signal generated from the sensor (electrode) could be particularly affected due to the capacitive parasite coming from the conductive tracks (CTs). Such a phenomenon might be reduced by printing them on the dielectric layer rather than on the piezocomposite layer. The study also investigates a highly anisotropic shape of electrodes (rectangular instead of circle), indicating that the orientation of such electrodes (axial or radial) does affect the output measurement. To sum up, the high performance of a sensor network coating depends not only on the ultimate characteristics of its own materials, but also on its structural design. Such an issue has been rarely reported on in the literature, but is nonetheless crucial to achieving reliable condition monitoring of bearings, especially for multidirectional loads-a key signature of early failure detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.