Abstract

Fluorinated linear organic solvents have great potential in improving the safety and lifetime of next-generation Li metal batteries. However, this group of solvents is underexplored. Here, we investigate the molecular and interfacial reactivity properties of seven partially and fully fluorinated linear carbonates designed based on conventional solvents. Using density functional theory, we find the highest occupied molecular orbital levels decrease with increasing substitution of the fluorinated functional groups, implying that fluorination, to a first approximation, improves the stability toward high voltage cathodes. On the basis of the simulated decomposition mechanisms and statistical analyses, we find that a fluorinated linear carbonate with partial fluorination at the methyl component is more accessible in terms of degradation and LiF nascence formation, leading to a potentially LiF-rich solid electrolyte interphase (SEI). The molecular design concepts and the computational techniques presented are transferable to ester and ether systems, facilitating the navigation in a large chemical design space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.