Abstract

Dendrite-free electrodeposition of lithium metal is necessary for the adoption of high energy-density rechargeable lithium metal batteries. Here, we demonstrate a mechanism of using a liquid crystalline electrolyte to suppress dendrite growth with a lithium metal anode. A nematic liquid crystalline electrolyte modifies the kinetics of electrodeposition by introducing additional overpotential due to its bulk-distortion and anchoring free energy. By extending the phase-field model, we simulate the morphological evolution of the metal anode and explore the role of bulk-distortion and anchoring strengths on the electrodeposition process. We find that adsorption energy of liquid crystalline molecules on a lithium surface can be a good descriptor for the anchoring energy and obtain it using first-principles density functional theory calculations. Unlike other extrinsic mechanisms, we find that liquid crystals with high anchoring strengths can ensure smooth electrodeposition of lithium metal, thus paving the way for practical applications in rechargeable batteries based on metal anodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call