Abstract

This paper aims at the design review and controllability assessment of a secondary system of SMART-ITL which is an integral effect test facility for an integral type reactor of SMART. The design concepts and operating characteristics of the SMART-ITL secondary system were described, and compared with a prototype SMART plant. Then, based on an experimental investigation, the thermal-hydraulic behaviors in the secondary system were analyzed in three sequential steps: a steady-state analysis of the thermodynamic aspect, a dynamic analysis using the lumped heat transfer model, and heat-up simulations as a case study. The key parameter determining system pressure was identified in the steady-state analysis. A dynamic model was established with several physical assumptions, and validated using relevant experimental results. Then, a case study was conducted to identify the effect of recirculation water during heat-up simulations using the validated dynamic model. The results indicated that the design of the present secondary system was appropriate as a part of the integral effect test facility of SMART-ITL, and was being properly operated to match the design intent. Furthermore, the design concept of the present SMART-ITL secondary system is expected to be widely utilized for various separate and integral effects tests for pressurized water reactor designs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call