Abstract

With the fast development of noninvasive diagnosis, the design of multimodal imaging probes has become a promising challenge. If many monofunctional nanocarriers have already proven their efficiency, only few multifunctional nanoprobes have been able to combine the advantages of diverse imaging modalities. An innovative nanoprobe called mesoporous persistent luminescence magnetic nanohybrids (MPNHs) is described that shows both optical and magnetic resonance imaging (MRI) properties intended for in vivo multimodal imaging in small animals. MPNHs are based on the assembly of chromium-doped zinc gallate oxide and ultrasmall superparamagnetic iron oxide nanoparticles embedded in a mesoporous silica shell. MPNHs combine the optical advantages of persistent luminescence, such as real time imaging with highly sensitive and photostable detection, and MRI negative contrast properties that ensure in vivo imaging with rather high spatial resolution. In addition to their imaging capabilities, these MPNHs can be motioned in vitro with a magnet, which opens multiple perspectives in magnetic vectorization and cell therapy research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call